Count complete tree nodes

Time: O((LogN)^2); Space: O(1); medium

Given a complete binary tree, count the number of nodes.

Notes:

  • Definition of a complete binary tree from Wikipedia:

  • In a complete binary tree every level, except possibly the last, is completely filled, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.

Example 1:

Input: root = {TreeNode} [1,2,3,4,5,6]

    1
   / \
  2   3
 / \  /
4  5 6

Output: 6

Example 2:

Input: root = {TreeNode} [1,2,3,4,5,6,8]

    1
   / \
  2   3
 / \  /\
4  5 6  8

Output: 7

[8]:
class TreeNode(object):
    def __init__(self, val=0, left=None, right=None):
        self.val = val
        self.left = left
        self.right = right

1. Binary Search [O((LogN)^2), O(1)]

[9]:
class Solution1(object):
    """
    Time: O(H*LogN)=O((LogN)^2)
    Space: O(1)
    """
    def countNodes(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        if root is None:
            return 0

        node, level = root, 0
        while node.left is not None:
            node = node.left
            level += 1

        # Binary search.
        left, right = 2 ** level, 2 ** (level + 1)
        while left < right:
            mid = left + (right - left) // 2
            if not self.exist(root, mid):
                right = mid
            else:
                left = mid + 1

        return left - 1

    # Check if the Nth node exist
    def exist(self, root, n):
        k = 1
        while k <= n:
            k <<= 1
        k >>= 2

        node = root
        while k > 0:
            if (n & k) == 0:
                node = node.left
            else:
                node = node.right
            k >>= 1

        return node is not None
[10]:
s = Solution1()

root = TreeNode(1)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.left, root.left.right = TreeNode(4), TreeNode(5)
root.right.left = TreeNode(6)
assert s.countNodes(root) == 6

root = TreeNode(1)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.left, root.left.right = TreeNode(4), TreeNode(5)
root.right.left, root.right.right = TreeNode(6), TreeNode(8)
assert s.countNodes(root) == 7

2. Binary Search [O((LogN)^2), O(1)]

[11]:
class Solution2(object):
    """
    Time:  O(H*H) = O((LogN)^2)
    Space: O(1)
    """
    def countNodes(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def height(root):
            h = -1
            while root:
                h += 1
                root = root.left
            return h

        result, h = 0, height(root)

        while root:
            if height(root.right) == h-1:
                result += 2**h
                root = root.right
            else:
                result += 2**(h-1)
                root = root.left
            h -= 1

        return result
[12]:
s = Solution2()

root = TreeNode(1)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.left, root.left.right = TreeNode(4), TreeNode(5)
root.right.left = TreeNode(6)
assert s.countNodes(root) == 6

root = TreeNode(1)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.left, root.left.right = TreeNode(4), TreeNode(5)
root.right.left, root.right.right = TreeNode(6), TreeNode(8)
assert s.countNodes(root) == 7

3. Binary Search [O((LogN)^2), O(1)]

[13]:
class Solution3(object):
    """
    Time:  O(H * LogN) = O((LogN)^2)
    Space: O(1)
    """
    def countNodes(self, root):
        """
        :type root: TreeNode
        :rtype: int
        """
        def check(node, n):
            base = 1
            while base <= n:
                base <<= 1
            base >>= 2

            while base:
                if (n & base) == 0:
                    node = node.left
                else:
                    node = node.right
                base >>= 1
            return bool(node)

        if not root:
            return 0

        node, level = root, 0
        while node.left:
            node = node.left
            level += 1

        left, right = 2**level, 2**(level+1)-1

        while left <= right:
            mid = left+(right-left) // 2
            if not check(root, mid):
                right = mid - 1
            else:
                left = mid + 1
        return right
[14]:
s = Solution3()

root = TreeNode(1)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.left, root.left.right = TreeNode(4), TreeNode(5)
root.right.left = TreeNode(6)
assert s.countNodes(root) == 6

root = TreeNode(1)
root.left, root.right = TreeNode(2), TreeNode(3)
root.left.left, root.left.right = TreeNode(4), TreeNode(5)
root.right.left, root.right.right = TreeNode(6), TreeNode(8)
assert s.countNodes(root) == 7